Sound Level Meter

Sound-Level-MeterSound level meters (SLMs) measure sound pressure level and are commonly used in noise pollution studies for the quantification of different kinds noise, especially for industrial, environmental and aircraft noise. However, the reading from a sound level meter does not correlate well to human-perceived loudness, which is better measured by aloudness meter. The current international standard that specifies sound level meter functionality and performance is the IEC 61672:2003.



The IEC 61672-1 specifies “three kinds of sound measuring instruments”.[1] They are the “conventional” sound level meter, the integrating-averaging sound level meter, and the integrating sound level meter.
The standard sound level meter can be called an exponentially averaging sound level meter as the AC signal from the microphone is converted to DC by a root-mean-square (RMS) circuit and thus it must have a time-constant of integration; today referred to as the time-weighting. Three of these time-weightings have been internationally standardised, ‘S’ (1 s) originally called Slow, ‘F’ (125 ms originally called Fast and ‘I’ (35 ms) originally called Impulse. Their names were changed in the 1980s to be the same in any language. I-time-weighting is no longer in the body of the standard because it has little real correlation with the impulsive character of noise events.

The output of the RMS circuit is linear in voltage and is passed through a logarithmic circuit to give a readout linear in decibels (dB). This is 20 times the base 10 logarithm of the ratio of a given root-mean-square sound pressure to the reference sound pressure. Root-mean-square sound pressure being obtained with a standard frequency weighting and standard time weighting. The reference pressure is set by International agreement to be 20 micropascals for airborne sound. It follows that the decibel is in a sense not a unit, it is simply a dimensionless ratio—in this case the ratio of two pressures.

An exponentially averaging sound level meter, which gives a snapshot of the current noise level, is of limited use for hearing damage risk measurements; an integrating or integrating-averaging meter is usually mandated. An integrating meter simply integrates—or in other words ‘sums’—the frequency-weighted noise to give sound exposure and the metric used is pressure squared times time, often Pa²·s, but Pa²·h is also used. However, because sound was historically described in decibels, the exposure is most often described in terms of sound exposure level (SEL), the logarithmic conversion of sound exposure into decibels.